Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).

Identifieur interne : 001194 ( Main/Exploration ); précédent : 001193; suivant : 001195

Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).

Auteurs : Gangfu Chen [République populaire de Chine] ; Lin Feng ; Shengyao Kuang ; Yang Liu ; Jun Jiang ; Kai Hu ; Weidan Jiang ; Shuhong Li ; Ling Tang ; Xiaoqiu Zhou

Source :

RBID : pubmed:22013925

Descripteurs français

English descriptors

Abstract

The present study was conducted to test the hypothesis that dietary arginine promotes digestion and absorption capacity, and, thus, enhances fish growth. This improvement might be related to the target of rapamycin (TOR) and eIF4E-binding protein (4E-BP). A total of 1200 juvenile Jian carp, Cyprinus carpio var. Jian, with an average initial weight of 6.33 (SE 0.03) g, were fed with diets containing graded concentrations of arginine, namely, 9.8 (control), 12.7, 16.1, 18.5, 21.9 and 24.5 g arginine/kg diet for 9 weeks. An real-time quantitative PCR analysis was performed to determine the relative expression of TOR and 4E-BP in fish muscle, hepatopancreas and intestine. Dietary arginine increased (P < 0.05): (1) glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities in muscle and hepatopancreas; (2) intestine and hepatopancreas protein content, folds height, and trypsin, chymotrypsin, lipase, Na⁺/K⁺-ATPase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase activities in intestine; (3) Lactobacillus counts; (4) relative expression of TOR in the muscle, hepatopancreas and distal intestine (DI); (5) relative expression of 4E-BP in proximal intestine (PI) and mid-intestine (MI), as compared with the control group. In contrast, dietary arginine reduced (P < 0.05): (1) plasma ammonia content; (2) Aeromonas hydrophila and Escherichia coli counts; (3) relative expression of TOR in PI and MI; (4) relative expression of 4E-BP in the muscle, hepatopancreas and DI. The arginine requirement estimated by specific growth rate using quadratic regression analysis was found to be 18.0 g/kg diet. These results indicate that arginine improved fish growth, digestive and absorptive ability and regulated the expression of TOR and 4E-BP genes.

DOI: 10.1017/S0007114511005459
PubMed: 22013925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).</title>
<author>
<name sortKey="Chen, Gangfu" sort="Chen, Gangfu" uniqKey="Chen G" first="Gangfu" last="Chen">Gangfu Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya'an, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya'an</wicri:regionArea>
<wicri:noRegion>Ya'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Lin" sort="Feng, Lin" uniqKey="Feng L" first="Lin" last="Feng">Lin Feng</name>
</author>
<author>
<name sortKey="Kuang, Shengyao" sort="Kuang, Shengyao" uniqKey="Kuang S" first="Shengyao" last="Kuang">Shengyao Kuang</name>
</author>
<author>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
</author>
<author>
<name sortKey="Jiang, Jun" sort="Jiang, Jun" uniqKey="Jiang J" first="Jun" last="Jiang">Jun Jiang</name>
</author>
<author>
<name sortKey="Hu, Kai" sort="Hu, Kai" uniqKey="Hu K" first="Kai" last="Hu">Kai Hu</name>
</author>
<author>
<name sortKey="Jiang, Weidan" sort="Jiang, Weidan" uniqKey="Jiang W" first="Weidan" last="Jiang">Weidan Jiang</name>
</author>
<author>
<name sortKey="Li, Shuhong" sort="Li, Shuhong" uniqKey="Li S" first="Shuhong" last="Li">Shuhong Li</name>
</author>
<author>
<name sortKey="Tang, Ling" sort="Tang, Ling" uniqKey="Tang L" first="Ling" last="Tang">Ling Tang</name>
</author>
<author>
<name sortKey="Zhou, Xiaoqiu" sort="Zhou, Xiaoqiu" uniqKey="Zhou X" first="Xiaoqiu" last="Zhou">Xiaoqiu Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22013925</idno>
<idno type="pmid">22013925</idno>
<idno type="doi">10.1017/S0007114511005459</idno>
<idno type="wicri:Area/Main/Corpus">001239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001239</idno>
<idno type="wicri:Area/Main/Curation">001239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001239</idno>
<idno type="wicri:Area/Main/Exploration">001239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).</title>
<author>
<name sortKey="Chen, Gangfu" sort="Chen, Gangfu" uniqKey="Chen G" first="Gangfu" last="Chen">Gangfu Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya'an, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya'an</wicri:regionArea>
<wicri:noRegion>Ya'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Lin" sort="Feng, Lin" uniqKey="Feng L" first="Lin" last="Feng">Lin Feng</name>
</author>
<author>
<name sortKey="Kuang, Shengyao" sort="Kuang, Shengyao" uniqKey="Kuang S" first="Shengyao" last="Kuang">Shengyao Kuang</name>
</author>
<author>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
</author>
<author>
<name sortKey="Jiang, Jun" sort="Jiang, Jun" uniqKey="Jiang J" first="Jun" last="Jiang">Jun Jiang</name>
</author>
<author>
<name sortKey="Hu, Kai" sort="Hu, Kai" uniqKey="Hu K" first="Kai" last="Hu">Kai Hu</name>
</author>
<author>
<name sortKey="Jiang, Weidan" sort="Jiang, Weidan" uniqKey="Jiang W" first="Weidan" last="Jiang">Weidan Jiang</name>
</author>
<author>
<name sortKey="Li, Shuhong" sort="Li, Shuhong" uniqKey="Li S" first="Shuhong" last="Li">Shuhong Li</name>
</author>
<author>
<name sortKey="Tang, Ling" sort="Tang, Ling" uniqKey="Tang L" first="Ling" last="Tang">Ling Tang</name>
</author>
<author>
<name sortKey="Zhou, Xiaoqiu" sort="Zhou, Xiaoqiu" uniqKey="Zhou X" first="Xiaoqiu" last="Zhou">Xiaoqiu Zhou</name>
</author>
</analytic>
<series>
<title level="j">The British journal of nutrition</title>
<idno type="eISSN">1475-2662</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Ammonia (blood)</term>
<term>Animals (MeSH)</term>
<term>Aquaculture (MeSH)</term>
<term>Arginine (administration & dosage)</term>
<term>Arginine (adverse effects)</term>
<term>Arginine (metabolism)</term>
<term>Carps (blood)</term>
<term>Carps (growth & development)</term>
<term>Carps (metabolism)</term>
<term>Carps (microbiology)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>Digestion (MeSH)</term>
<term>Eukaryotic Initiation Factor-4E (metabolism)</term>
<term>Fish Proteins (genetics)</term>
<term>Fish Proteins (metabolism)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Hepatopancreas (enzymology)</term>
<term>Hepatopancreas (growth & development)</term>
<term>Hepatopancreas (metabolism)</term>
<term>Intestinal Absorption (MeSH)</term>
<term>Intestinal Mucosa (metabolism)</term>
<term>Intestines (enzymology)</term>
<term>Intestines (growth & development)</term>
<term>Intestines (microbiology)</term>
<term>Lactobacillus (growth & development)</term>
<term>Lactobacillus (isolation & purification)</term>
<term>Muscle, Skeletal (enzymology)</term>
<term>Muscle, Skeletal (growth & development)</term>
<term>Muscle, Skeletal (metabolism)</term>
<term>Organ Specificity (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Random Allocation (MeSH)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transaminases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Absorption intestinale (MeSH)</term>
<term>Ammoniac (sang)</term>
<term>Animaux (MeSH)</term>
<term>Aquaculture (MeSH)</term>
<term>Arginine (administration et posologie)</term>
<term>Arginine (effets indésirables)</term>
<term>Arginine (métabolisme)</term>
<term>Carpes (poisson) (croissance et développement)</term>
<term>Carpes (poisson) (microbiologie)</term>
<term>Carpes (poisson) (métabolisme)</term>
<term>Carpes (poisson) (sang)</term>
<term>Digestion (MeSH)</term>
<term>Facteur-4E d'initiation eucaryote (métabolisme)</term>
<term>Hépatopancréas (croissance et développement)</term>
<term>Hépatopancréas (enzymologie)</term>
<term>Hépatopancréas (métabolisme)</term>
<term>Intestins (croissance et développement)</term>
<term>Intestins (enzymologie)</term>
<term>Intestins (microbiologie)</term>
<term>Lactobacillus (croissance et développement)</term>
<term>Lactobacillus (isolement et purification)</term>
<term>Muqueuse intestinale (métabolisme)</term>
<term>Muscles squelettiques (croissance et développement)</term>
<term>Muscles squelettiques (enzymologie)</term>
<term>Muscles squelettiques (métabolisme)</term>
<term>Numération de colonies microbiennes (MeSH)</term>
<term>Protéines adaptatrices de la transduction du signal (génétique)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de poisson (génétique)</term>
<term>Protéines de poisson (métabolisme)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Répartition aléatoire (MeSH)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transaminases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Arginine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Arginine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Ammonia</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Fish Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Arginine</term>
<term>Eukaryotic Initiation Factor-4E</term>
<term>Fish Proteins</term>
<term>RNA, Messenger</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transaminases</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Arginine</term>
</keywords>
<keywords scheme="MESH" qualifier="blood" xml:lang="en">
<term>Carps</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Carpes (poisson)</term>
<term>Hépatopancréas</term>
<term>Intestins</term>
<term>Lactobacillus</term>
<term>Muscles squelettiques</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Arginine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Hépatopancréas</term>
<term>Intestins</term>
<term>Muscles squelettiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Hepatopancreas</term>
<term>Intestines</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Carps</term>
<term>Hepatopancreas</term>
<term>Intestines</term>
<term>Lactobacillus</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de poisson</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Lactobacillus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Lactobacillus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Carps</term>
<term>Hepatopancreas</term>
<term>Intestinal Mucosa</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Carpes (poisson)</term>
<term>Intestins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Carps</term>
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Arginine</term>
<term>Carpes (poisson)</term>
<term>Facteur-4E d'initiation eucaryote</term>
<term>Hépatopancréas</term>
<term>Muqueuse intestinale</term>
<term>Muscles squelettiques</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de poisson</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transaminases</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Ammoniac</term>
<term>Carpes (poisson)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Aquaculture</term>
<term>Colony Count, Microbial</term>
<term>Digestion</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Intestinal Absorption</term>
<term>Organ Specificity</term>
<term>Random Allocation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Absorption intestinale</term>
<term>Animaux</term>
<term>Aquaculture</term>
<term>Digestion</term>
<term>Numération de colonies microbiennes</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Répartition aléatoire</term>
<term>Spécificité d'organe</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study was conducted to test the hypothesis that dietary arginine promotes digestion and absorption capacity, and, thus, enhances fish growth. This improvement might be related to the target of rapamycin (TOR) and eIF4E-binding protein (4E-BP). A total of 1200 juvenile Jian carp, Cyprinus carpio var. Jian, with an average initial weight of 6.33 (SE 0.03) g, were fed with diets containing graded concentrations of arginine, namely, 9.8 (control), 12.7, 16.1, 18.5, 21.9 and 24.5 g arginine/kg diet for 9 weeks. An real-time quantitative PCR analysis was performed to determine the relative expression of TOR and 4E-BP in fish muscle, hepatopancreas and intestine. Dietary arginine increased (P < 0.05): (1) glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities in muscle and hepatopancreas; (2) intestine and hepatopancreas protein content, folds height, and trypsin, chymotrypsin, lipase, Na⁺/K⁺-ATPase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase activities in intestine; (3) Lactobacillus counts; (4) relative expression of TOR in the muscle, hepatopancreas and distal intestine (DI); (5) relative expression of 4E-BP in proximal intestine (PI) and mid-intestine (MI), as compared with the control group. In contrast, dietary arginine reduced (P < 0.05): (1) plasma ammonia content; (2) Aeromonas hydrophila and Escherichia coli counts; (3) relative expression of TOR in PI and MI; (4) relative expression of 4E-BP in the muscle, hepatopancreas and DI. The arginine requirement estimated by specific growth rate using quadratic regression analysis was found to be 18.0 g/kg diet. These results indicate that arginine improved fish growth, digestive and absorptive ability and regulated the expression of TOR and 4E-BP genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22013925</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1475-2662</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>The British journal of nutrition</Title>
<ISOAbbreviation>Br J Nutr</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).</ArticleTitle>
<Pagination>
<MedlinePgn>195-207</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1017/S0007114511005459</ELocationID>
<Abstract>
<AbstractText>The present study was conducted to test the hypothesis that dietary arginine promotes digestion and absorption capacity, and, thus, enhances fish growth. This improvement might be related to the target of rapamycin (TOR) and eIF4E-binding protein (4E-BP). A total of 1200 juvenile Jian carp, Cyprinus carpio var. Jian, with an average initial weight of 6.33 (SE 0.03) g, were fed with diets containing graded concentrations of arginine, namely, 9.8 (control), 12.7, 16.1, 18.5, 21.9 and 24.5 g arginine/kg diet for 9 weeks. An real-time quantitative PCR analysis was performed to determine the relative expression of TOR and 4E-BP in fish muscle, hepatopancreas and intestine. Dietary arginine increased (P < 0.05): (1) glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities in muscle and hepatopancreas; (2) intestine and hepatopancreas protein content, folds height, and trypsin, chymotrypsin, lipase, Na⁺/K⁺-ATPase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase activities in intestine; (3) Lactobacillus counts; (4) relative expression of TOR in the muscle, hepatopancreas and distal intestine (DI); (5) relative expression of 4E-BP in proximal intestine (PI) and mid-intestine (MI), as compared with the control group. In contrast, dietary arginine reduced (P < 0.05): (1) plasma ammonia content; (2) Aeromonas hydrophila and Escherichia coli counts; (3) relative expression of TOR in PI and MI; (4) relative expression of 4E-BP in the muscle, hepatopancreas and DI. The arginine requirement estimated by specific growth rate using quadratic regression analysis was found to be 18.0 g/kg diet. These results indicate that arginine improved fish growth, digestive and absorptive ability and regulated the expression of TOR and 4E-BP genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Gangfu</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya'an, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuang</LastName>
<ForeName>Shengyao</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Weidan</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shuhong</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xiaoqiu</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Br J Nutr</MedlineTA>
<NlmUniqueID>0372547</NlmUniqueID>
<ISSNLinking>0007-1145</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039561">Eukaryotic Initiation Factor-4E</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029941">Fish Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7664-41-7</RegistryNumber>
<NameOfSubstance UI="D000641">Ammonia</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>94ZLA3W45F</RegistryNumber>
<NameOfSubstance UI="D001120">Arginine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000637">Transaminases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000641" MajorTopicYN="N">Ammonia</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017756" MajorTopicYN="N">Aquaculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001120" MajorTopicYN="N">Arginine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002347" MajorTopicYN="N">Carps</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004063" MajorTopicYN="N">Digestion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039561" MajorTopicYN="N">Eukaryotic Initiation Factor-4E</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029941" MajorTopicYN="N">Fish Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="Y">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043143" MajorTopicYN="N">Hepatopancreas</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007408" MajorTopicYN="N">Intestinal Absorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007413" MajorTopicYN="N">Intestinal Mucosa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007778" MajorTopicYN="N">Lactobacillus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011897" MajorTopicYN="N">Random Allocation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000637" MajorTopicYN="N">Transaminases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22013925</ArticleId>
<ArticleId IdType="pii">S0007114511005459</ArticleId>
<ArticleId IdType="doi">10.1017/S0007114511005459</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Feng, Lin" sort="Feng, Lin" uniqKey="Feng L" first="Lin" last="Feng">Lin Feng</name>
<name sortKey="Hu, Kai" sort="Hu, Kai" uniqKey="Hu K" first="Kai" last="Hu">Kai Hu</name>
<name sortKey="Jiang, Jun" sort="Jiang, Jun" uniqKey="Jiang J" first="Jun" last="Jiang">Jun Jiang</name>
<name sortKey="Jiang, Weidan" sort="Jiang, Weidan" uniqKey="Jiang W" first="Weidan" last="Jiang">Weidan Jiang</name>
<name sortKey="Kuang, Shengyao" sort="Kuang, Shengyao" uniqKey="Kuang S" first="Shengyao" last="Kuang">Shengyao Kuang</name>
<name sortKey="Li, Shuhong" sort="Li, Shuhong" uniqKey="Li S" first="Shuhong" last="Li">Shuhong Li</name>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
<name sortKey="Tang, Ling" sort="Tang, Ling" uniqKey="Tang L" first="Ling" last="Tang">Ling Tang</name>
<name sortKey="Zhou, Xiaoqiu" sort="Zhou, Xiaoqiu" uniqKey="Zhou X" first="Xiaoqiu" last="Zhou">Xiaoqiu Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Gangfu" sort="Chen, Gangfu" uniqKey="Chen G" first="Gangfu" last="Chen">Gangfu Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22013925
   |texte=   Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22013925" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020